Weakly supervised learning of actions from transcripts
نویسندگان
چکیده
منابع مشابه
Weakly supervised learning of actions from transcripts
We present an approach for weakly supervised learning of human actions from video transcriptions. Our system is based on the idea that, given a sequence of input data and a transcript, i.e. a list of the order the actions occur in the video, it is possible to infer the actions within the video stream, and thus, learn the related action models without the need for any frame-based annotation. Sta...
متن کاملWeakly supervised learning from images and videos∗
With the amount of on-line available digital content growing daily, large-scale, weakly supervised learning is becoming more and more important. In this talk we present some recent results for weakly supervised learning from images and videos. Standard approaches to object category localization require bounding box annotations of object instances. This time-consuming annotation process is sides...
متن کاملWeakly-supervised Dictionary Learning
We present a probabilistic modeling and inference framework for discriminative analysis dictionary learning under a weak supervision setting. Dictionary learning approaches have been widely used for tasks such as low-level signal denoising and restoration as well as high-level classification tasks, which can be applied to audio and image analysis. Synthesis dictionary learning aims at jointly l...
متن کاملWeakly supervised learning of allomorphy
Most NLP resources that offer annotations at the word segment level provide morphological annotation that includes features indicating tense, aspect, modality, gender, case, and other inflectional information. Such information is rarely aligned to the relevant parts of the words—i.e. the allomorphs, as such annotation would be very costly. These unaligned weak labelings are commonly provided by...
متن کاملWeakly Supervised Learning of Affordances
Localizing functional regions of objects or affordances is an important aspect of scene understanding. In this work, we cast the problem of affordance segmentation as that of semantic image segmentation. In order to explore various levels of supervision, we introduce a pixelannotated affordance dataset of 3090 images containing 9916 object instances with rich contextual information in terms of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computer Vision and Image Understanding
سال: 2017
ISSN: 1077-3142
DOI: 10.1016/j.cviu.2017.06.004